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Numerical analysis of deformed free surface under AC
magnetic �elds
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SUMMARY

A novel numerical scheme for the analysis of large deformation of electrically conducting liquid under
alternating current magnetic �elds is presented. The main features are characterized by two numerical
tools; the level set method to calculate deformed free surface stably and the hybrid �nite element
method and boundary element method to discretize the electromagnetic �eld e�ciently. Two-dimensional
numerical simulation of conducting drop deformation is carried out to demonstrate the e�ectiveness of
the present scheme, and the oscillatory behaviour, which depends on the magnitude of surface tension
and Lorentz force, is investigated. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Nowadays it becomes more important to introduce magnetohydrodynamics (MHD) into in-
dustry in order to achieve high purity of the products and improve productivity by control-
ling electrically conducting �uid �ows. The idea is based on the theory that the Lorentz
force, which stirs or pushes conducting liquid, is generated by the interaction between the
induced current and the magnetic �ux density under the alternating current (AC) magnetic
�eld. In practice, it is carried out in some industrial applications, such as cold crucible, �oat-
ing zone method and electromagnetic stirring [1]. However, in these processes, the interface
becomes usually unstable due to the strong Lorentz force, and non-linear �uctuations, which
give harmful e�ects on products, occur. Since such instability is caused by many factors,
numerical simulation should be an e�ective tool to �nd out optimum conditions for these
techniques.
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In the present study, we develop an e�ective numerical scheme that realizes coupled anal-
ysis of the �ow and electromagnetic �elds taking account for large deformation. Although
numerous numerical studies in the area of MHD have been reported so far, the interface
shapes are assumed to be constant in most cases. In the proposed scheme, a level set method
[2–4] is adopted to treat the interface movement, and the governing equations of the ve-
locity �eld are solved by the generalized simpli�ed marker and cell (GSMAC) method
[5, 6]. In the calculation of the electromagnetic �eld, the governing equations are formu-
lated by the vector potential method and discretized by the hybrid �nite element method–
boundary element method (FEM–BEM). After the veri�cation, numerical analysis of conduct-
ing drop deformation under zero gravity is carried out with the present scheme to show its
e�ectiveness.

2. FORMULATION OF THE ELECTROMAGNETIC FIELD

First, the governing equations of the AC magnetic �eld are formulated by the A−� method.
By employing the magnetic vector potential A and the electric scalar potential �, the
Maxwell’s equations can be written in the following form:

J=− 1
�m

∇2A (1)

∇2A= �m�m

(
@A
@t
+∇�

)
(2)

where J; �m; �m and t are the electric current density, magnetic permeability, electric conduc-
tivity and time, respectively. Here, the Coulomb gauge ∇·A=0 is used to lead these equations.
In Equation (2), the contribution of velocity is omitted since low magnetic Reynolds number
problems are solved in the present study. Consequently, the �ow �eld has no in�uence on the
electromagnetic �eld, whereas the electromagnetic �eld gives the Lorentz force to the �ow
�eld.

3. FORMULATION OF THE FLOW FIELD

The velocity �eld is governed by the equation of continuity and the incompressible Navier–
Stokes equation, which are, respectively, written as follows:

∇ · v = 0 (3)

�
(
@v
@t
+ v · ∇v

)
= −∇p+ �∇2v − �s(∇ · n)n�� + J×B (4)

where v; �; p; �; �s; n; �� and B are the velocity, density, pressure, coe�cient of viscosity, sur-
face tension, unit normal vector pointing to the gas phase, approximate Delta function and
magnetic �ux density, respectively. In Equation (4), the gravity term is omitted due to zero-
gravity condition. The discontinuous change of the physical properties on the free surface is
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smoothed by the approximate Heaviside function H� as follows:


H�(F)=0 if F¡− �

H�(F)=
1
2

{
1 +

F
�
+
1
�
sin

(
�F
�

)}
if |F |6�

H�(F)=1 if F¿�

(5)

where F is the level set function and � is the smoothing bandwidth. In the present study, the
liquid phase lies in F¡0, while the gas phase does in F¿0. The approximate Delta function
is obtained by di�erentiating the approximate Heaviside function. The physical properties are
de�ned in one generic equation, q=H�qG + (1 − H�)qL where q being the density or the
coe�cient of viscosity; the subscript G denotes the gas phase and L denotes the liquid phase.
The position of a free surface is captured by the level set function. The interface, F =0,

moves according to the following advection equation:

@F
@t
+ v · ∇F =0 (6)

4. DISCRETIZATION OF THE ELECTROMAGNETIC FIELD

Calculation is conducted in the two-dimensional space that is composed of the FEM and
BEM domains as shown in Figure 1. Equation (1) is solved in the BEM domain �B, while
Equation (2) is done in the FEM domain �A. When the electric scalar potential is assumed
to be constant in the z direction, Equations (1) and (2) are, respectively, rewritten in the
following vector potential formulation:

Jf z = − 1
�m0

∇2Az (7)

Figure 1. Calculation domains.
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∇2Az = �m�m
@Az
@t

(8)

where Jf z is the e�ective value of the alternating current �own in a coil in the z direction
and �m0 is the magnetic permeability in a vacuum. The important point is that the physical
properties in the electromagnetic �eld are de�ned in the same way as the velocity �eld, i.e.
q=H�qG + (1− H�)qL where q being the magnetic permeability or the electric conductivity.
This enables a conductive and deformed object to be solved with a level set method.

4.1. Discretization in the FEM domain

On the basis of the Galerkin method, Equation (8) is discretized as follows:

j!
M∑
e=1
�me�me

∫
�eA

N	N
 d�AAz
 +
M∑
e=1

∫
�eA

∇N	 · ∇N
 d�AAz


=
BM∑
e=1

∫
�eA

N	N
 d�A

(
@Az
@n

)



(9)

where the subscripts 	 and 
 denote the local node numbers, and the variables with the
subscript e are constants in the elements; M and BM are the numbers of elements in total
and on the boundary, respectively; N	 and N
 are the bilinear shape functions; �A is the
boundary of �A. Due to the assumption that the alternating current oscillates with the angular
velocity !, the magnetic vector potential can be expressed in complex number according
to the Euler’s formula. Thus, the time derivative @=@t can be treated as j!. By using two
matrices de�ned as

[N ] = j!
M∑
e=1
�me�me

∫
�eA

N	N
 d�A +
M∑
e=1

∫
�eA

∇N	 · ∇N
 d�A

[f] =
BM∑
e=1

∫
�eA

N	N
 d�A

(
@Az
@n

)



(10)

Equation (9) is rewritten in the following form:

[N ][Az]= [f] (11)

4.2. Discretization in the BEM domain

Equation (7) is discretized by BEM as follows:

ciAzi +
BM∑
e=1

∫
�eB

@u∗

@n
N	 d�BAz	 −

BM∑
e=1

∫
�eB

u∗N	 d�B

(
@Az
@n

)
	
=�m0

∫
�B
u∗Jf z d�B (12)

where the subscript i denotes the node number; ci and u∗ are the ratio of the interior angle
at each node and the fundamental solution, respectively; �B is the boundary of �B. By using
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three matrices de�ned as

[H ] = cii +
BM∑
e=1

∫
�eB

@u∗

@n
N	 d�B

[G] =
BM∑
e=1

∫
�eB

u∗N	 d�B (13)

[F] = �m0
∫
�B
u∗Jf z d�B

Equation (12) is rewritten in the following form:

[H ][Az]− [G]
[
@Az
@n

]
=[F] (14)

Then the following equation can be obtained:

[K ′][Az] = [M ]
[
@Az
@n

]
+ [M ][G]−1[F]

[K ′] = [M ][G]−1[H ]
(15)

by multiplying both sides of Equation (14) by the inverse matrix of [G] and the matrix [M ]
de�ned as

[M ]=
BM∑
e=1

∫
�eB

N	N
 d�B (16)

Here, the asymmetric matrix [K ′] is converted into a symmetric form as follows:

[K]=
1
2
{[M ][G]−1[H ] + ([M ][G]−1[H ])T} (17)

Consequently, the following equation is obtained by substituting [K] for [K ′] in
Equation (15):

[K][Az]= [M ]
[
@Az
@n

]
+ [M ][G]−1[F] (18)

4.3. Hybrid FEM–BEM

By adding two matrix equations formed by FEM and BEM, which are, respectively, shown
in Equations (11) and (18), the following equation is led:

[N + K][Az]= [M ][G]−1[F] (19)

due to the combination on the boundary described as follows:

[f]= − [M ]
[
@Az
@n

]
(20)
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In this study, [Az] is calculated by the skyline method. Then both magnetic �ux density and
electric current density are obtained by introducing the calculation result into the following
equations:

Be =
@N	
@y

Az	i − @N	
@x

Az	j (21)

Jze =−j!�meN	Az	 (22)

where i and j are the unit vectors pointing to the x and y directions, respectively.
Therefore, the average Lorentz force Fav can be calculated as follows:

Fav =
1
2
Re[−JzeB∗

yei+ JzeB
∗
xej] (23)

where the variable with the superscript ∗ denotes a conjugate complex number. By introducing
the average Lorentz force into the Navier–Stokes equation, a coupled analysis of the �ow and
electromagnetic �elds is achieved.

5. DISCRETIZATION OF THE FLOW FIELD

Equation (4) is discretized by GSMAC–FEM with the help of Equation (3) as follows:

�ne �M	

ṽ
 − vn

�t

=−�ne(vne ·A	
)vn
 − �ne�t
2

B	
vn
 +C	p
n
e − �neD	
vn


−�s
C� · nn�
�e

M	
nn
�
n
�e +M	
(Fav)
 − S	 (24)

�(m)pe =−�ne
−1 C	 · ṽ(m)	

�e
(25)

p(m+1)e =p(m)e +
�(m)pe

�t
(26)

�ne �M	
ṽ
(m+1)

 = �ne �M	
ṽ

(m)

 +C	�(m)pe (27)

where the superscript n denotes the nth time step and m the iterative calculation level of the
Poisson’s equation; ṽ is the intermediate value of velocity, �t the increment of time, �e the
area of an element, 
 the Laplace operator and �p is the modi�ed momentum potential.
Equation (6) is discretized explicitly as follows:

�M	

Fn+1
 − Fn


�t
= − vn+1e ·A	
Fn
 − �t

2
B′
	
F

n

 (28)

In Equation (28), the interface moves according to the velocity of the next time step obtained
in Equation (27).
The element coe�cient matrices and the boundary term are calculated as shown in

Figure 2. Here, B	
 and B′
	
 are the balancing tensor di�usivity (BTD), which are introduced

for stabilization [7]. In Equations (24), (27) and (28), �M	
 is the lumped mass matrix.
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Figure 2. The element coe�cient matrices and the boundary term.

6. VERIFICATION OF THE NUMERICAL SCHEME

In order to prove the validity of the present scheme, the numerical results of the electromag-
netic �eld are checked through the comparison with those obtained by Kaneko et al. [8] and
a commercial code MAGNA. The validity of the velocity �eld employing a level set method
is proved in the other paper [9].
Figure 3 shows the distribution of the Lorentz force obtained by hybrid FEM–BEM with

the vector potential method for a 16× 10 uniform mesh. The numerical result is qualitatively
in good agreement with that of Kaneko et al.
Figure 4 shows the comparison of the magnitude of Lorentz force on the side of mercury in

a container. Two types of three-dimensional numerical simulation are carried out with di�erent
discretization methods: FEM available in MAGNA and hybrid FEM–BEM with the A − �
method. The calculation result of the two-dimensional numerical simulation corresponding to
Figure 3 is also shown on the graph. In addition, the result obtained by applying the Gaussian
elimination method to Equation (19), in which [K ′] is used instead of [K], is plotted to
evaluate the error in symmetrization in Equation (17). The number of grids on the examined
vertical plane is 160 in every case. The validity of the schemes is proved by the similarity
between the pro�les, although the magnitude of Lorentz force is slightly larger in the two-
dimensional case compared to that in the three-dimensional case due to the simpli�cation
that the scalar potential � is constant in the z direction. Since the two-dimensional calculation
results show good agreement, the error due to symmetrization can be regarded as being small.
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Figure 3. Distribution of the Lorentz force.

Figure 4. Comparison of the Lorentz force on the side of mercury in a container.

7. NUMERICAL ANALYSIS OF THE OSCILLATION OF A CONDUCTING DROP

7.1. Analytical model

Figure 5 shows the schematic diagram of the analytical model. A silicon drop with a
radius of 0:6 cm is �oated under zero gravity, and its centroid corresponds to that of the
FEM domain �A whose length and height are, respectively, 3.6 and 2:5 cm. Two coil sec-
tions, which are 0:5 cm square, are located on both sides of the domain, and the alternating
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Figure 5. Schematic diagram of the analytical model.

current �ows in them in the inverse directions of each other. While the frequency of the
alternating current is �xed at 2:0 kHz, the following three e�ective values are used to vary
the strength of Lorentz force: 200; 250 and 300A. The magnitude of surface tension is also
varied between 0.5 and 12mNm−1 in order to investigate the relation to the oscillatory be-
haviour. The density, coe�cient of viscosity, electric conductivity and relative permeability
are 2330 kgm−3; 1:00mPa s; 1:057MSm−1 and 1.0, respectively.
As the boundary condition of the velocity �eld, the slip condition is imposed on �A. The

increment of time is 0:1ms, and the computation for the electromagnetic �eld is done every
10ms. The domain is discretized into a uniform mesh of 87 (length) × 60 (height) elements.
The smoothing bandwidth is set at the length of four grids in the y direction.

7.2. Results and discussion

Figure 6 shows the transient drop shapes and the distributions of the inside Lorentz force
at �s = 1 mN m−1; Jf z=300 A. At �rst the drop deforms elliptically as shown in Figures
6(a)–(d) due to the strong Lorentz force imposed on its sides. Then the shape is restored
to a circle as shown in Figures 6(e)–(h) since the restoring force at the top and the bottom
of the drop becomes larger as it deforms due to the increase of curvature, while the Lorentz
force on the sides becomes smaller. Therefore, the drop oscillates periodically by repeating
them.
The distribution of the electric current density is shown in Figure 7 with contour lines.

Here, the signs represent the direction of the physical quantity. Since a silicon drop possesses
rather high electric conductivity, the induced current is generated inside the drop. The mag-
nitude of the induced current becomes larger in the radial direction, which corresponds to the
theory.
Figure 8 shows the histories of the radius length of the drop obtained by using three

di�erent e�ective values of the alternating current at �s = 1 mN m−1. It is observed that all
of them oscillate with a constant period. As the increase of the e�ective value, the amplitude
becomes larger due to the strengthened Lorentz force.
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Figure 6. Transient drop shapes and the distributions of the inside Lorentz force at �s=1 mN m−1,
Jf z =300 A: (a) 0:2 s; Fmax = 101:6 Nm

−3; (b) 0:4 s; Fmax = 71:3 Nm−3; (c) 0:6 s; Fmax = 52:2 Nm−3;
(d) 0:8 s; Fmax = 46:1 Nm−3; (e) 1:0 s; Fmax = 54:2 Nm−3; (f) 1:2 s; Fmax = 77:9 Nm−3; (g) 1:4 s,

Fmax = 105:7 Nm−3; and (h) 1:6 s; Fmax = 114:1 Nm−3.
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Figure 7. Distribution of the electric current density with contour lines (�J =[Jmax − Jmin]=15)
at �s = 1 mN m−1; Jf z =300 A; t=0:2 s.

Figure 8. Histories of the radius length of the drop with three di�erent e�ective values of the
alternating current at �s = 1 mN m−1.

Figure 9 shows the histories of the radius length of the drop obtained by using three
di�erent values of surface tension at Jf z=300 A. As shown, the amplitude and the period
of oscillation become, respectively, smaller and shorter as the magnitude of surface tension
increases. This is caused by the fact that the Lorentz force imposed on the sides is rela-
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Figure 9. Histories of the radius length of the drop with three di�erent values
of surface tension at Jf z =300 A.

Figure 10. Relation between surface tension and amplitude of the drop oscillation at Jf z =300 A.

tively weakened due to the strengthened restoring force at the top and the bottom of the
drop.
Finally, the e�ect of surface tension is investigated more extensively. Figures 10 and 11

show the relation between surface tension and, respectively, amplitude and period of the drop
oscillation at Jf z=300 A. If the surface tension did not exist, a drop deformed unlimitedly
due to no repulsion for the Lorentz force, and both amplitude and period became in�nity.
On the other hand, if the surface tension grew to in�nity, both amplitude and period became
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Figure 11. Relation between surface tension and period of the drop oscillation Jf z =300 A.

in�nitesimal due to in�nitesimal deformation from the equilibrium state. These two results are
in good agreement with the theory mentioned above.

8. CONCLUSIONS

A numerical scheme was developed to solve large deformation problems of conducting liquid
under the AC magnetic �eld. The interface movement is solved by a level set method based on
the GSMAC scheme, and the electromagnetic �eld is calculated with a simpli�ed A−� method
whose formulation is discretized by hybrid FEM–BEM. To show its e�ectiveness, numerical
analysis of conducting drop oscillation was carried out on the zero-gravity condition. As a
result, it is con�rmed that the oscillation of the drop is caused by the interaction between
the Lorentz force and the restoring force, and its amplitude and frequency depend on the
magnitude of these forces.
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